Benchmarking big number operations: C vs Python
最近在做RSA加密算法,急需要对大数(很大的数,一般来说是十进制500位以上的数字)进行加法和乘法操作。这就需要对如此大的数操作很快才可以。自然而然,我就想到了Python,它天生就支持大数操作。所以我的RSA也是用Python实现的。
简单地搜了一下网上的一些实现,用C的基本上都采用了gmp库,很牛的一个数字计算的库,接口很方便,而且效率也很乐观。下载一个其中一个还算漂亮的实现,速度超快。相比之下,我的Python程序就慢成马了,难以容忍,优化了一下循环,替换了一个判断素数的算法,效率还是低得出奇。无奈之下,向Herbert求救,在他的提示下,对C和Python的大数操作benchmark了一番。
我用的源代码如下:(声明:C代码编写仓促,很是丑陋,勿模仿!)
include
include
include
include
include
void timediff(struct timeval a,struct timeval b,struct timeval* result)
{
(result)->tv_sec = (a)->tv_sec - (b)->tv_sec;
(result)->tv_usec = (a)->tv_usec - (b)->tv_usec;
if((result)->tv_usec tv_sec;
(result)->tv_usec += 1000000;
}
}
int main(void)
{
int i;
mpz_t p, q, r;
struct timeval before, after, diff;
char p_str[1024] = {‘1’,};
char q_str[1024] = {‘1’,};
mpz_init(p);
mpz_init(q);
mpz_init(r);
srand(time(NULL));
for(i=1;i<1024;i++)
p_str[i] = (int)(2.0*rand()/(RAND_MAX+1.0)) + 48;
for(i=1;i<1024;i++)
q_str[i] = (int)(2.0*rand()/(RAND_MAX+1.0)) + 48;
mpz_set_str(p, p_str, 10);
mpz_set_str(q, q_str, 10);
gettimeofday(&before, NULL);
mpz_add(r, p, q);
gettimeofday(&after, NULL);
timediff(&after, &before, &diff);
printf("add needs time:");
printf("n%-15s : %ld","Seconds", diff.tv_sec);
printf("n%-15s : %ld","Microseconds", diff.tv_usec);
puts("");
gettimeofday(&before, NULL);
mpz_mul(r, p ,q);
gettimeofday(&after, NULL);
timediff(&after, &before, &diff);
printf("multiply needs time:");
printf("n%-15s : %ld","Seconds", diff.tv_sec);
printf("n%-15s : %ld","Microseconds", diff.tv_usec);
puts("");
mpz_clear(r);
mpz_clear(q);
mpz_clear(p);
return 0;
}
!/usr/bin/env python
import time
import string
import random
p = q = r = 0
BIG_NUM = []
for i in range(1024):
BIG_NUM.append(random.choice(‘0123456789’))
p = int(‘’.join(BIG_NUM))
for i in range(1024):
BIG_NUM[i] = random.choice(‘0123456789’)
q = int(‘’.join(BIG_NUM))
before = time.time()
r = p+q
after = time.time()
print r
print “Add needs time: %f us”%((after - before)1000.01000.0)
before = time.time()
r = p*q
after = time.time()
print r
print “Multiply needs time: %f us”%((after - before)1000.01000.0)
实验结果如下:
(C version, compiled with gcc -O9)
$ ./bench
add needs time:
Seconds : 0
Microseconds : 5
multiply needs time:
Seconds : 0
Microseconds : 11
(Python version)
$ ./bench.py
Add needs time: 15.020370 us
Multiply needs time: 207.901001 us
-_-b 刚才搞错进制了。。。 1 second=1000*1000 microseconds 这下对了。Python确实比C慢。抑或是真正的问题出在这里?而不在我的算法?
顺便也在这里问一下:有没有什么好的寻找大素数的算法??
(整个RSA实现会在以后的文章中贴出。)